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\ ABSTRACT

Spreading modulation wavefnrms are discussed in general terms, and a
classification system is described. Several well-known examples are given,
and a new, standard set of spreading modulations is introduced. Spectra of
all the waveforms are given, and spectral properties are discussed in relation
to system performance. It is shown that these properties are.essentially
determined by three waveform parameters, for a large class of spreading

modulations.
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1. INTRODUCTION

A random spreading modulation is, basically, a means of complicating the
signal of a communications system in order to make that system more difficult
to jam. Like any other electronic counter-counter measure tactic, it
is a game, whose object is to maximize the cost to the jammer of achieving a
given degradation to one's system. Absolute immunity to jamming generally
cannot be achieved, except possibly temporarily, until the opponent figures
out what you are doing. The tactic of spreading is approached here from the
point of view that the adversary knows exactly what you are doing, and is free
to do his best to degrade your performance.

The complication introduced by random spreading has two essential
features: a randomness in the waveform modulation which greatly reduces the
effectiveness of repeat jamming, and a spreading of the instantaneous
spectrum, which increases the available processing gain against a given level
of total jamming power. Simple frequency hopping, which increases the system
bandwidth without changing the width of the instantaneous spectrum, is a
related, and complementary technique, which is not discussed further in this
study.

A simple example will illustrate the application of a random spreading

modulation. Suppose a communications iink, designed for a friendly

environment, makes use of a signal which consists entirely of simple pulses,
organized in a way which permits both synchronization and data transmission.
The pulses all have the same shape (say rectangular) and the same carrier
frequency, and occur in a burst of some fixed pattern for synchronization.
Data may be transmitted by a systematic alteration of some pulse parameter,
such as its transmission time, as in pulse-position modulation. To add some
anti-jam capability to such a system, the simple pulse may be divided into N
equal sub-pulses, or chips, with the carrier phase in each chip either
reversed (i.e., changed by 180°) or unaltered in accordance with an N-bit
pseudorandom binary sequence. This is binary phase-shift keying, BPSK, one of
the simplest of the spreading modulation techniques. By the use of BPSK, the
pulse bandwidth is increased by a factor of N, which is one of the objectives

of the spreading technique.
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When BPSK is used in this way, the pseudorandom bit sequence must be

l'l
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known to the receiver, where a filter matched to the spread pulse is

implemented. It is a major feature of systems utilizing random spreading

Lo 4
0

EEEE modulations that the spreading bit-sequence is known to the receiver, although
t:%; any modulation technique normally used for the transmission of information
H bits could, in principle, be used as a spreading modulation. 'l‘hu.s random

A spreading implies a different receiver structure than data demodulation of the
i'. same waveform, and, most important, a different criterion for performance.

Ek: It is not intended that the bit sequence, or code, used in one pulse be

used for all, but rather that this code be continually changed from pulse to
pulse. In effect, both sender and receiver must have the ability to generate
the same, unlimited sequence of bits in time synchronism, successive groups of
N bits being used to "code" successive signal pulses. Of course, the sender
must be able to modulate his pulses with these ever-changing code sequences,
and more significantly, the receiver must be able to configure a filter,
matched according to some criterion, to each expected coded pulse. For the
spreading modulations studied here, this last requirement presents
difficulties of widely varying degree. Such implementation issues will have a
decisive effect as the choice of modulation in practice, but hardware
techniques change rapidly, and no attempt is made here to assess the value of
a modulation scheme from a hardware point of view,

The example just given is perhaps the simplest scheme that has the
requisite properties of a random sprcading modulation. A very general
definition would consider any scheme which mapped a finite sequence of bits
into a finite segment of waveform to be a possible spreading modulation
technique. We restrict this definition by the application of two constraints,
one of practical importance, and one of a simplifying nature, in order to
define a workable class of waveforms for analysis,

The first constraint is to limit ourselves to constant-envelope
waveforms. The major reasons for this requirement are practical, allowing the
use of simple power amplifiers in transmitters and repeaters. Constant

envelope also allows the maximum signal energy, in a given signal duration, in

the face of a peak power limitation. These reasons are often compelling in
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real system design, and many effective spreading modulations have been devised

within the constant-envelope constraint. Other waveforms may be converted to
constant-envelope form by clipping, either deliberate or inadvertent, but the
original waveform's spectral properties are usually not improved in this way.
Subsequent filtering will restore some amplitude modulation, hence it is
desirable to study constant-envelope modulations which meet the spectral
occupancy limitations within which the system must be designed in the first
place. Spectral occupancy restrictions play a key role in spreading

modulation performance evaluation, and the general goal is to maximize anti-jam
processing gain while operating within a given bandwidth or spectral window.

Since the waveform is to have constant envelope, it can be described by
its phase or frequency modulation. Our second constraint requires that the
waveform be segmented into equal chips, that the phase or frequency modulation
imposed within a given chip be one of a small number of possibilities, and
that the choices made in the successive chips depend in a simple way on a
pseudo-random bit sequence of a non-repeating nature.

We tend to think of the waveform as built of pulses, as in our simple
example, each pulse requiring N input bits for its specification. But, in the
analysis of spectral properties, we treat N as large, and it is not important
that the waveform actually be segmented into separate pulses, hence our
results will be valid for continuous waveforms as well. Our second constraint
will be made more specific in Section II, where a classification system is
introduced and the method of spectral analysis described.

If a signal structure is indeed built out of pulses, each of which is
modulated by a random spreading modulation, then other anti-jam techniques can
still be used as well. For example, pulse-to-pulse frequency hopping can widen
the system bandwidth still further, and randomization of the timing of pulses
according to a scheme available to the receiver can also be employed.

Quantitative measures of spreading performance have been discussed
elsewhete(l), in terms of efficiency parameters which measure the loss in
processing gain (from the ideal value of time-bandwidth product) which results

b from operating in a fixed band against an optimizing noise jammer. These

parameters depend only on the average power spectrum of the modulation, and
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they favor spectra which are flat within an allotted band and fall off rapidly
outside that band. A brief derivation of these performance measures is given
in Appendix A. Interference with other systems, or other users of the same
system, will place more specific requirements on the spectral density of the
spreading modulation, in terms of sidelobe levels and spectral decay beyond
the nominal band. These are, basically, spectrum allocation constraints, and

must be considered separately in each case.

In this study we present the spectral properties of various groups of J

spreading modulation waveforms, without judgment of their relative merits. The

AT 0,
“.'r 2

actual choice in a particular system design will be dictated by many factors,

including hardware issues and postulated jamming scenarios; but the spectral
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properties of the waveform chosen will play a central role in this choice.
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II. WAVEFORM CLASSES AND METHOD OF COMPUTATION OF SPECTRA

An initial decomposition of spreading modulations is based upon two
features: the constancy (or lack of it) of the phase within each chip, and
the continuity (or lack of it) of phase at the chip boundaries. Our first
class consists of the "constant phase"” waveforms, in which the carrier phase
remains constant during each chip, with discontinuous change at chip
boundaries permitted. The value of the phase in a given chip is determined by
a particular subset of the code bit sequence which corresponds to the pulse in
question. In the simplest case, we assign the bits to the chips in a
one-for-one manner, and the only other case discussed here utilizes two bits
per chip in some way. The bit, or bits, éssigned to a given chip can
determine the phase absolutely, or control an increment to be applied to the
phase of the preceeding chip. When two bits are used per chip, they can be
two "new"” bits for every chip, or a two-bit window can slide along the bit
sequence, controlling phase in some way. These possibilities are discussed in
detail in Section III.

The other major class of modulations combines varying phase (throughout
the chip) with phase continuity at chip boundaries. The waveforms are most
naturally described in terms of the possible frequency modulation patterns
employed. One can have a repetoire of'2n possible patterns for any chip,
selected according to the values of a set of n consecutive bits in the code
sequence. One could then take n new bits for each chip, or slide an n-bit
window along the sequence, ylelding a correlation between successive frequency
modulation patterns. An example(o§ this latter group called "tamed FM" has

2

been discussed in the literature as an information modulation, but the
remainder of this study is devoted to the so-called "binary FM" waveforms, of
which there are several well-known examples.

The binary FM waveform uses just one bit for each chip, hence one of two
frequency modulation patterns is applied. We further specialize this class by
the assumption that one of these patterns is the negative of the other (with
respect to a suitable cfrrier frequencx), so that the frequency modulation in

the nth chip will be * ¢(t-nA), where ¢(t) is the basic frequency modulation
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pattern of the waveform, A is the chip duration, and the algebraic sign is
fixed by the nth bit of the spreading code. If ;(t) is a constant, the
frequency-shift keying (FSK) waveform results, the simplest example of a
binary FM waveform. Binary FM waveforms are discussed in detail in Sections
IV, V and VI.

The two other classes allowed by our original division are excluded from
this study for the following reasons. The first class would consist of
constant-phase waveforms with phase continuity at chip boundaries, 1i.e.,
unmodulated pulses, and these are of no interest as spreading modulations. The
remaining class allows phase discontinuities at chip boundaries along with
phase variation within the chip. The phase jumps of such waveforms impart to
them the same slow decay of spectral density with frequency as is exhibited by
BPSK (namely inverse square), which defeats the primary purpose of the
variable phase waveforms. It will be shown in Section IV that the asymptotic
spectral properties are determined by the number of continuous derivatives of
phase at chip boundaries, and the frequency modulation patterns, ;(t), of
different binary FM waveforms are chosen with this property in mind. To allow
phase discontinuities *“o occur (deliberately or accidentally) would ruin the
good features otherwise attainable in the waveform design, and this can be
clearly demonstrated in specific cases, 1In the binary FM waveforms, the
frequency modulation function is bounded, and the resulting phase variation is
continuous over the entire waveform. If, in addition, the frequency
modulation function is zero at the beginning and end of a chip, then the
overall frequency modulation of the waveform is continuous, regardless of the
original bit sequence, and this leads to faster spectral decay with frequency.
Further details are given in Section IV.

Our basic method of computing spectra begins with an explicit expression
for the waveform as a function of time and the code sequence. Next, we
compute the Fourier transform of this time function, still as a function of
the code bits. The square of the Fourier transform gives the energy spectrum,
and the desired power spectrum of the original waveform is obtained by
dividing NA, the total duration of the signal, which is N chips long.

Finally, the spreading modulation spectrum is found by taking an ensemble
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average over the bits of the spreading code. These bits are treated as
"purely random”, i.e., independent and equally likely to assume either value.
The "purely random” assumption places some limitation on the
applicability of our results, but in many applications one strives for an
approximation to this quality in real code sequences. This is not a basic

limitation of the method, however, which would still be applied if the

statistical properties of the code sequence in use were well enough known.

The spectra of individual waveforms will vary considerably, depending on
the actual bits of the code, but the ensemble averages computed here are still
relevant for the behavior of the system, so long as code sequences change
continually, as we have assumed from the start.

Other methods of spectral computation are equivalent, but tend to be more
difficult to apply. For example, a spreading waveform can be modelled as a
stationary random process by extending it indefinitely in time and treating
the start time of some reference chip as a random variable, uniformly
distributed over an interval of length A, while the chip spacing remains
rigid. One can then compute a covariance function and finally, by Fourier
transformation, a power spectrum. Other authors have used Markov chain models
to describe the sequence of phase variations in the waveform, and these too
tend to become complicated.

The essential feature of the method used here is a representation
theorem, which permits the expression of any binary FM waveform in a form
formally very similar to the representation of a constant-phase waveform. This
form permits easy application of the approach outlined above. The
representation theorem is proved in Section 1V, and the basic spectrum

calculation is given in Section III.
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III. CONSTANT-PHASE WAVEFORMS
A constant-phase waveform, N chips long, is uniquely specified by the

L N ] e *
)b * UN-1
determined from an input bit sequence according to an algorithm characteristic

sequence of carrier phases 90, 0 This sequence, in turn, is

of the modulation scheme. The modulation waveform itself can be written as a
summation of adjacent rectangular pulses, each one chip in duration, and
having the appropriate values of phase. The rectangular pulse function is

defined as

1 0<tc<aA
Po(t) -
0 ; otherwise,

and the complex modulation function which describes this waveform is then

N-1 1en
Z(t) = z e Po (t = na) .
n=0

This function vanishes outside the interval 0 < t < NA, and the underlying
carrier is arbitrary (although practical generation techniques often make use
of an integral relationship between chip duration and carrier period).

The familiar Fourier transform of the rectangular pulse is denoted k,(w),

as follows:

A
1 -1wt
2 Io Po(t) e dt

k (w)

. e-imA/Z sin(wa/2) .
~ (wa/2)

In terms of k,(w), the Fourier transform of the modulation itself is

NA
K(w) = [ 2(t) e 19t g¢
(o]

N-1 10 na+ - -
= ) e /] P(t -na)e " a 1
o
n=0 na

N-1  1(8 - nuwA)
= Ak (w) § e s
o
n=0 .
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The quantity |K(w)|2 is the energy spectrum of the waveform, and

(according to Parseval's theorem)

NA
IR(w)1%dw = [ 1z(t)1%t = NA , ‘
0 o

| —

1
2n

since |Z(t)| 1s identically unity. Thus |K(m)|2/NA is the desired power

spectrum, whose ensemble average is given by

o(f) = 3 IR I?
N-1 1(6_ - nwh)
=alk @1 § 1] e ® 1% .

n=0

We write spectral densities as functions of ordinary frequency, with the

understanding that w = 2nf., The overbar denotes ensemble average, which can

be evaluated after the specific dependence of the phase sequence on the code

bit sequence 1is given. I
The separation of G(f) into a "pulse factor", in this case, |k°(m)|2, and

a code factor (the ensemble average) is typical of all the spreading

modulations considered in this study. The code factor 1is periodic in

frequency, with period equal to the chipping rate, f = 1/A, hence the

chip
spectral behavior for all constant-phase waveforms, at large frequency (i.e.,
for from band center), is given by the pulse factor, which in this case decays
as f-z. Because of our normalization of the modulation waveform, the power

spectral density integrates to unity:

7 dw
-£ G(f) E & lo

The code factor is expanded as follows:

N-1
l| Z ei(en-nmA)lz

n=0

| Nfl ¢ 1(8p=0)-1(m-n)wA
N
n,m=0

m—— . R m—— L S, —— P — e D —
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- -1fwA
= 2 Cze ’
L==(N-1)
where, for £ > 0,
N-1-2
C = l_ z e1(9n+2 - en) .
2 N
n=0
When ¢ < O, 4
N-1
C. = 1 e1(°n+£ - 6n) .
2 N a=lnl |
and it follows that
*
C_z - Cz p
and that
C =1.

(o]

The numbers, C,, form the truncated autocorrelation sequence of the finite,

z’
random sequence, e 1,
If the phases are statistically independent, and if

eien - g,

then all the Cz will vanish, except for Co, and the spectral density will be

given by the pulse factor alone: |

G(£) = Alko(w)lz

ainz(wA/Z)

- A
(wd/2)% )

This is the case for BPSK, since each phase angle is equally likely to assume
either of two values, 180 degrees apart. If the code bit sequence is written

by by wdag by.y» and if each b 1s a binary variable taking only the values

], then the BPSK phase sequence can be defined by the statement
ie
e

=
4
i
~l
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4
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for 0 < n < N-1. The same power spectral density describes the QPSK waveform
(quadriphase shift keying), at the same chipping rate, since QPSK can be

described in terms of a sequence of 2N bits as follows:
ie
n

e = (b +

2n 1b2n+1)'

-
Nl -

Four phase values are possible, but the average value of elbn g5 5till zero.

If the phases are independent, but if elbn 55 not zero, for example if

=50 ’
then lines appear in the spectrum. It is not hard to show that, for large N,
the fraction 1 - |p|2 of the power is found in a spectral density just like
that of BPSK, while the remaining fraction, |p|2, is in a line at w = 0 (band
center), This kind of spectral density is undesirable in a spreading
modulation, hence this case is not discussed in further detail,

A number of constant-phase waveforms exhibit correlation, at least over
adjacent chips. An example is SQPSK (staggered, or offset QPSK), in which the

correspondence of code bits and waveform phases is best shown by a diagram:

Q bp-i b+l
bn " bnt2
1 On-2| On-1| On On+1|%n+2

Here, I and Q refer to in-phase and quadrature signals, which are separately
modulated by alternate bits, as shown, and then combined to form the resultant

phase sequence. From this diagram, we can write

ie ) 1
n-l o —-_
e " (bn + 1bn_1) q
ie 1
ol ¢ a
e r (bn + 1bn+1) Y
ie 1
e Nl o /3 (bn+2 g 1bn+1) ’
etc.,
11
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B! Only adjacent phases are correlated, and we have

€ 2 (bn % ibn+1)(bn ibn—i) A

since by bp4x = by bpyk = 0, for k # 0, and bn2 = 1. Similarly we have

i(en"'l ¥ en) - l - - l
£ 2 (bn+2 e ﬂ:‘1:1-0»1)(‘)11 ibn-i) 252

and this equation is thus true for both even and odd values of n. We have

therefore found that -
C, =0 , 2l > 1
and
N-2
-1 1(6n4+1-8n) . 1 N-1 _
‘7% nZO ¢ 3§ e

For large N, which 1s always the case of interest here, we can take Ci) = 1/2

and thus
G(f) = alk (1% 11 +3 (7104 4 MUty
sinz(wA/Z) -
= A T T (1 + cos wh)
(wa/2)
- 2A sinz(wA/Z) cosz(wA/Z)
(wd/2)2
or
sinz(wA) 3
G(f) = 2A -_2- .
(wa)

In this case, the result is the same as the spectrum of BPSK or QPSK at one-

half the chipping rate. In terms of our diagram, it means that the Q-channel
signal could be advanced (or delayed) by one chip length, thus aligning the

bits to produce conventional QPSK with chips twice as long as the original

ones, all without changing the spectrum.
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A second example exhibiting one-chip correlation is illustrated in the
following diagram:

Q bp-3 | bn-2 | bpn-1| ba
I ba-2 | bn-1 | bn bny)
Bn-2 Bn-1 On Bn+1

We call it PQPSK ("Poor-man's QPSK"), and, like SQPSK, the bit rates and chip

rates are equal. From the diagram,

ie 1
. e Ma— (b +1ib_ )
v/.i n n-1

- and
5 16 =96
o n+l L | = -
!a e > (bn+1 + ibn)(bn ibn_l) i/2 .
R: For large N,

3 C = i/2 , € =-1/2,

3 and the spectral density 1is

A iwA
-e

: o(f) = alk (1% {1+ 3 ™ )

= sinz(wA/Z)

7 (1 + sin wa) .
(wa/2)

g 1f I and Q channels are interchanged in this example, the second factor in the
_£ spectral density is changed to (1 - sin wA).
] A final example, which has been called(3) upsk (unidirectional PSK),

shows correlation of phase over two chips. The defining diagram is

. Q bn-) by bn+]
E 2 I by by bn4l
: 6n-2 | On-1 | ®n | On+1 | On+2

i Sy e T T T AN L B T T T . T T i i i Tl i S i I L A B S AT T Lp0sl Sut _sulh b .
_ B iV e P a B a il o, i P R P P - SN - 1
-

e




T TR

¥ and we have
2 10
‘] e " . b _ +1b )
- V2
3 10
e "o b +1b )
V2
- S b +1b)
- V2
ie .
n+l 1
e 75— (bn+1 + ibn),
etc., We evaluate
i (6, -6__.)
:j' e n-1 n-2 -%- (l + 1)
" 1(6_ - 6__ )
i SR L+
k| 2
g I(6_.. - 6 )
") @ n+l n = _% €l i)
and so on, and also
i(en e en-2)
e =0
16, -6_)
- n+l n-1 = 1/2 &

This last sequence continues to alternate between the values 0 and 1/2, and we
find (for large N);

C, =5 (1+1),C)=1/4,

1
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and hence, after some simplification,

sinz(wA)

G(f) = 2A 5
(wd)

(1 + sin wA) .
Again, interchange of I and Q channels in the definition replaces (l+s8in wA)
by the factor (l-sin wA). '

It is convenient to replace frequency by an angle variable, 8, defined as
follows:

0 = wA = 2nfA = 2nf/fchip,
and to use a corresponding, dimensionless spectral density:
g(8) = G(f)/A.
Then g(6) 18 normalized according to
©

[ g(8) do =1 .

-00

The spectral densities of the constant-phase waveforms discussed so far can be

summarized as follows:

sin2(6/2)

BPSK, QPSK: g(6) = 2
. (e/2)

sinze

SQPSK: g(8) = 2
o2

(6/2)*

sin26

e2

PQPSK: g(o) =

UPSK: g(o) = 2 (1 * sing) .

These spectra are shown in Fig. III-1, where spectral density is plotted
on a linear scale. The plots are made from the g(6)-formulas, but with the
abscissa labelled by the ratio (f/fchip) = 0/2%. The spectral differences
here are not significant, from a spreading point of view, and the disadvantage

shared by all is the inverse-square decay of spectral density with frequency.

15
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Another variation of the constant phase theme assigns statistically

independent increments, wn’ to the initial phase of each chip of the waveform.

Then
n
o =8, + ¥ Yy s
m=]
and ( )
i{o -0 n+4
n+2 n - exp(i Z ‘l’m) .
m=n+1

If the increments, {,, form a stationary, independent sequence, determined by

the input bit sequence, then

i(6n+1z —E 2

where

The code factor of the spectral density is then given by

NE” N-g ¢ ~1fwa

1 4+ 2Re P
pal o

which becomes, in the limit of large N,

1=l

1+ lpl? - 2re(p e7194)

In general, the correlation introduced by specifying increments (instead of
phases directly) leads to ripples in the spectral .density, as given by this
code factor. If, however, p=0, then the BPSK spectrum reappears, no matter
how many bits are used to specify each phase increment,

An interesting case occurs if each phase increment is either %y,

according to the corresponding code bit, We can write

v, = b ¥
and evaluate

p = e“’n = cosy .

17
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5 The spectrum of any waveform featuring independent phase increments can be

i‘ matched by one of these special waveforms, with appropriate choice of y. The

code factor, expressed in terms of ¢, is
sinzw
1+ coszw -~ 2cosy cos(wh)

in this case, and we shall meet this factor again, in a similar context, in
connection with binary FM waveforms.

In terms of 6=wA, the complete spectral density for this waveform, which
we call IPSK (incremental phase shift keying) is

8in(6/2) 2 sinzw
8/2

g(o) = 5
1 + cos™y - 2cosy cosb

Linear plots of g(6) for a range of y~values are given in Fig. III-2. As y+0,
the spectral density approaches a line at zero frequency (band center), and
when y+w, lines appear at frequencies ifchip/z on either side of band center.
The relative density, G(f)/G(0) is shown, for a range of y-values, in Fig.
I1I-3, expressed in dB. The null positions are independent of Y, ana t'2 slow
decay with frequency is evident. It should also be noted that sidelobe levels

increase with increasing values of ¢ in this range.
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- IV. BINARY FM WAVEFORMS
Eﬂ A binary FM spreading modulation is completely specified by its
:ff characteristic frequency modulation function, &(t), which is defined only over
o the interval 0<t<A, one chip in duration. During the nth chip of the
waveform, which starts at t=njA, the instantaneous frequency is defined to be

#(t) = b $(t-ns),

where b, is the nth bit of the spreading code. The inftial phase (at t=0) is

taken to be zero, so that the modulation waveform is

Z(t) = eio(t),

where
t .
o(t) = f ¥(s) ds.

o
i: The last chip ends at t=NA, and 2(t) is taken to be zero outside the interval
- O<t<NA.
_ The characteristic phase variation is
'... 1 t o
[~ o(t) = [ ¢(s) ds,
-: (o)
:_. and we define

v = ¢(8).

This parameter, Y, 1f of basic importance in the study of these waveforms; it
represents the magnitude of the phase change which takes place across every
chip. The actual phase increments accumulate, with appropriate signs, so that

the waveform phase at time t=nA, which we call Bn, is given by

8, = #(na) = (b, +b, + ... b )V

1
Of course, 60 = 0, and within the nth chip, we have

o(t) = en + bn ¢(t-na) ,
where

nA < t < (n+l)aA.
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We assume now that siny does not vanish, deferring discussion of this
special case (where y is an integral multiple of x) until later. With this
restriction we introduce the "pulse fdnction", P(t), which is non-zero only

over an interval two chips long, by the equations

cscy sin{y-¢(t)]; 0<t<A
P(t) =  cscy sin[¢(t + A)]; -A<t<O

0] ; otherwise .,

Note that P(t) is continuous, being zero at t = %A and unity at t=], but not
necessarily symmetric. Finally, consider the waveform

N 16
7 e T p(t - ma) ,

Z (t)
L m=0

where Om = (b° + ... + bm_l)w as before.

For a time, t, within the nth chip (i.e., 1f nA < t < (n+1)a), only the
terms m=n and m=n+l1 of the sum defining Z;(t) contribute, and then

1en 19n+1
Zl(t) = e P(t-nA) + e P(t-nA-A)

ie
= cgcy { e 2 sin[y-¢(t-na))

16
Lt sin{¢(t-na)]}.

But

16 16 + 1b_y
n n
e =e 5

and

e " = cos(bnw) +1 sin(bnw)

= cosy + :I.bn siny,

since b, is a binary variable. We therefore obtain
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(0 ie 1
?a. Zl(t) = c8cy e B {sin[y-¢(t-nA)] + (cos¢+1bnsinw)sin[¢(t-nA)]} A ;
Elf or
pee i6
K Z,(t) =e M {cos[4(t-na)] + 1b_ sin[¢(t-na)}
) eien + :lbn é(t-na)
= Z(t)
- This equality of Z(t) and Zl(t) holds within every chip, since the inclusion

of the term m=N in the sum defining Zl(t).validates our derivation for any

value of n, from zero through N-1 (note that 6 _ is just the phase of Z(t) at

N
time t=NA). At chip boundaries, Z(t) and Zl(t) are still equal, since

i9 ie
z,(nd) =e "P(o) me ".

The modulation function, Zl(t), is zero when t < ~A and when t>(N+1)A,
and thus Z(t) and Zl(t) differ only during the two intervals, each one chip
long, which precede and follow the original time interval over which Z(t) is
non-zero. The new function is not constant-envelope in these "extra chips,”
but for large N their presence cannot ﬁave a large effect on the spectral
properties of Zl(t), and henceforth we use the definition of Zl(t) as a
representation of Z(t), dropping the subscript. From another point of view,
the use of the sum for Z(t) is not a serious approximation because Z(t), as
originally defined, is only an idealization of the waveform likely to be
produced in practice.

k- For many purposes, including the computation of spectra, the sum

representation of Z(t) is very much more convenient than the original

;’;, definition. 1In fact, the general derivation of Section II needs only one

change to apply to binary FM waveforms. That change is to replace P,(t) by |

P(t), and the transform, ko(w), by the new transform

A
k> K(w) = % [ B(r) e71®
) A

tae.
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Then

'u N 1(6_ - nwA] -
e G(£) = Alk(w)l? - 1] e ® |
; n=0

') i

2|

vy

a product of puiae factor and code factor, as before.

The code factor is simple, since

n n+l n+2—lw

e = e s e * o o

iby 1b__ ¥ b
e

~-ﬂ - (cosw)z F

This follows from the independence of the b, and the identity

eibw = cosy + 1b siny = cosy ,

for any binary variable. For large N, we get
Cz = (cosw)z

for £>0 and

b5 Iz
L Cz = C_z = (cosy)

for negative 2. The rest of the evaluation of the code factor has already
been carried out in Section III (waveforms with independent increments), and
we find

N 1i(6_- nmAI'Z

1 ' Z
= e
L n=0
- g c e-ilwA _ ain2¢
f£=-N % 1+ coazw - 2cosy cos wA
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Our derivation is a bit heuristic, but the result is easily established by a
careful analysis, so long as lcosyl<1.

This code factor is unity for any binary FM waveform in which ¢ is an odd
multiple of /2, and most of the modulations suggested for spreading purposes
share the value y=n/2. It turns out that this choice leads to the simplest
receiver design, if the matched filter is realized passively, but, as we shall
see, other values of y are desirable for shaping spectra for maximum spreading
effectiveness.

The asymptotic behavior of the spectral densities is determined by the
- pulse factor, as it was for constant-phase waveforms, but much greater variety

is now possible. The discontinuous pulse function, Po(t), led to an inverse
square decay in the former case, but all binary FM waveforms have spectral
densities which fall off at least as fast as f-A (it is assumed that the
characteristic frequency modulation function, }(t), is bounded). To verify

this property, we write

and carry out a partial integration in the defining equation for k(w):

A
k(o) = 3+ [ B(t) e
-A

e

St afal

o
R

A
{ p(t) d(e”14%)

Bt 0
4 PO

A
- 1
e f

P(t) e-iwtdt .

The integrated part vanishes because P(t) is continuous throughout the
interval, including the point t=0 and the points t=tA, where it is zero.

However, P(t) may be discontinuous at these points, and a repetition of the

procedure yields
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A .
k(w) = —%— f P(t) de-imt
wAa -=A
o
=g [ PB(t) e luty,
2
wA =A
++ (p(a-)e 198 _ propp)el®d
w A

- B0V + P(0-)} .

The notation P(tt) stands for the limit of P(tte) as e+0, and
we see that k(w) varies as f~2 (hence G(f) goes like £-4) 1f p(t) is
discontinuous at t=0 or t=*(, and if P(t) is bounded within (-A,A).

1f i(t) is also continuous, the argument is repeated again, and so on, so
that one sees that the asymptotic properties of G(f) are directly correlated
with the smoothness of the pulse function, P(t), at the origin and at the ends
of its range.

The smoothness of P(t) depends, in turn, on the corresponding properties

of ¢(t). For instance, in the interval -A<t<0,

P(t) = cscy cos[o(t+4)] (t+A) ,
and hence

P(-A+) = cscy $(0+)
and

P(0-) = coty ¢(A-) .
Similarly,

P(0+) = —coty ¢(0+)

P(A=) = -cscy ¢(A=) .
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If P(t) 18 to be continuous, i.e., zero, at t=*A, then ¢(t) must vanish at
both ends of its range of definition., This, in turn, makes é(t) continuous at
t=0, If ;(t) vanishes at t=0 and t=A, then

;(-A+) = cscy ¢(0+)

P(A-) = —cscy ¢(A-)
and so on, hence the controlling parameter in this matter is the order of the
zero of ;(t) at t=0 and t=A (or the lower, i1if these are unequal).

It is easy to see why this should be .so, by considering two adjacent
chips. At the chip boundary the instantaneous frequency changes from t;(A-)
to * &(0+), depending on the relevant bits, hence the more smoothly é(t)
approaches zero at the ends of its range the smoother will be the transitions
from one chip to the next.

To summarize this relationship, we can say that 1if ¢(n)(t) is the lowest-
order phase derivative which fails to vanish at t=0 and/or t=A, then k(w) will

decay as gl FHLE

, and the spectral density as f , at great distance from
band center. This statement is also true for constant phase waveforms, which
correspond to n=0, while for all binary FM waveforms, n>l. The parameter n,
along with ¢, has a major effect on thé.character of the spectra of binary FM
waveforms.,

We conclude this section with a discussion of some special values of y,
the phase shift per chip. First, let y=nv/2, which is typical of many
waveforms used for the transmission of information., As noted, the code factor
is unity for these cases, hence the spectral density of the waveform is
identical to that of the pulse factor itself. The basic representation also

simplifies, since

eib1r/2 = {i§

for any binary variable, and therefore, for n)0,

ien a
e = ] bobl X bn-l .
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We can define a new bit-sequence, a,, as follows:

80 - 1’
-}: 81 - bo = a bo 5
Z % B by VE P
8n LJ b L) bn-l 8n—1bn—l,
?ﬂ and then write
- N
- z(t) = ¥ 1 a_ P(t-na) .
L n
ri S n=0

The a-sequence is purely random if the b-sequence is, and the b's are
recovered from the a's by means of the relation

= = TS

The new expression for Z(t) is particularly useful for the study of techniques

{§ for generating these waveforms and for the design of matched filters for the

;i corresponding receivers. The case Y= -v/2 leads to the complex conjugate of

- this representation for Z(t).

a When y=Kw, the whole analysis must be changed, and we go back to the

:ﬁ? original definition of Z(t), namely,

- 16 + 1b_ ¢(t-na),

E-. Z(t) me n

¥ th

o for values of t in the n chip. But now,

?i, eib¢ = eibxﬂ = cos(Kx) = (—1)K 5

: hence

B ie ]
L e "= ('l)nK ’

t{' which is independent of the bit sequence. Then |

z(t) = (-1)"K {cos[¢(t-na)] + ib, sin[¢(t-nA)]}

\ within the nth chip, and the I-component is deterministic. If we define
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A(t) = cos[4(t)] P (L),

- B(t) = sin[¢(t)] P (t),

o where P_(t) is the rectangular pulse function defined in Section III, then we
- o ]

can write

N-1
z(t) = 7 (-1)™ A(t-na)
g s
N-1 2
g +1 § (D" b, B(t-na)
n=0

X (t) +1Y(t) .

In terms of the pulse function Fourier transforms:

k (w) = %L ACt) e 1wt 4
1 4 -1wt
s [ cosl[é(t)] e dt
=A .
and
)l y -1t
ky(m) £ < -ofo B(t) e dt
) 1 e -lwt
- 5 [ sin[¢(t)] e de ,
-A
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we obtain

K(w) = [ z(t) e 19t g¢

N-1
Akx(w) 2 (_l)nK e-inwA

n=0

T T W e i
e it el nde

N-1
Ak (w) z (_l)nK bne-inwA
y n=0

+

Kx(w) + iKy(w) a

The spectral density is now

o(f) =45 KWI? = 5z K (@1% + & k@12 .

In the first term, we evaluate

N-1 N
el nkK _-inwA 1 2 _(“’A“‘K“) sin 3 (wA+KT)
1 (-1 e =e 2 -
n=0 . sin 7‘(wA+Kw)
and hence
= L 2
Gx(f) = N |Kx(w)|

‘ stn? X (wA+KT)
/ 5 5
- - Alkx(w)l 5 :
:: N sin 7-(wA+Kw)
b2 For large N, the second factor represents a sum of §-functions at the points

4 wA+Kn = 2Lw, for integral L, and Gx(f) becomes a line spectrum. In the usual
k. case, all but a finite number of these lines are cancelled by zeroes of the

factor, kx(w).

30

3 §
o % L . A
G ST Vo T G WY ST U UL AU G TP, L. WO, O WAL WY Wt SN TR DU O, ¥ E-D U0 LIS DU PN Y S




- -y vy - ~ - - - - -
R i Al e B A e R --‘.".'..".:r'r'...'—?.:'.-' A Rvd :.3..'. v '—i-v..'-x "'::7"'"‘"1"‘ G o i oo o B G -vr—T-"..v‘q.- = v —y *

The Q-component term represents a continuous spectrum:

1 2
6, (6) = 7 IR (W]

[~4

.l N- 2
' = Ik (w)l2 | zl b e-in(wA+Kﬂ)|
4 y n=() B

Z| -

3 = Alky(u»lz g

in view of the independence of the bits in the code sequence.

Since spectral lines are very undesirable in a spreading waveform, the
analysis of these cases is carried no further. It is worth noting, however,
that upon squaring, the phase modulation of a waveform is doubled, so that a
spreading waveform with a given value of { will look like a waveform of the
same type, but with double the y-value, after passing thrcugh such a non-
linearity. Thus a waveform, like MSK, with y=n/2, will yield lines in the

spectrum if squared, and this could be undesirable from the point of view of

signal detection and frequency determination by a potential jammer.
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V. TYPICAL BINARY FM WAVEFOQORMS
The simplest binary FM waveform is FSK (frequency shift keying), defined
by the statement

&(t) = constant.

The constant value of & may be written y/A, and the carrier frequency is
increased or decreased by this amount during each chip, according to the sign
of the corresponding code bit., Since &(t) is never zero, we know that the

spectral density will behave like f-4

(n=1) as f+e,

The FSK pulse function, P(t), is shown in Fig. V-1 for various values of
y. The special case, Y=r/2, is the familiar MSK (minimum shift keying)
waveform, distinguished here by the continuous slope of P(t) at the origin.
All binary FM waveforms having y=n/2 share this latter property, due to the
factor coty in the expressions for ﬁ(Ot). However, the slope discontinuity of
the pulse function at t=tA is then the determining factor for asymptotic
spectral behavior.

The Fourier transform is easily evaluated. After noting that

P(t) = cscy sin(y - IZI ) I

we write
A
k(w) = 32%2 -2 sin(w--% V)cos wt dt
o
cs g t t
- Acw f {sin(y == v + wt) + sin(y % Y - wt)} dt ,
o
or
2y cosy - cos whA
k(w) O .
siny (mA)2 = ¢2
32

- - ' 4
P ’ g PRLIPN T o ] L .
adk PPN BIP AT y SP G N N T B SO JOE PO O ey 'y DIPTSR U N, ) BRSNS I R g

4
N A“A‘J




J

BBt

suoriouny asynd JYSI °T~-A °8T1d g

.

et S
S loa o

-
P TR B U RS W

.
)
o
Al e

e

33
" " a
re T FaAYeYLYe]

.
-

iy
o el

(3)d

- (T-A)965-dL . L

Y ormm e T 4 B2 A e o g e ]
A N T ’
s_r o aoiend ] Y ey L ) S %




e
2
.

. ek A At B e S e e S et A kB B Bt Tk STt s e St e ke T e i i e ik e sl i .-1
- - - - f

e it

—r
-

We combine Ik(w)l2 with the code factor and express the result in terms of the
angle variable, 6=wA, and the dimensionless g(8) = G(f)/A, as before:

o8 af"""ﬁ -';v. -

L+ I e
o L

B 1+coszw - 2cos{ cosh

2
g(8) = sz {COS&'CM} 1 .
g~y

Plots of this function on a linear scale are given in Fig. V-2 for a wide
range of ¢ values. The effect of the denominator of the code factor is
obvious, as it was in the case of IPSK, and as y approaches = or zero, the
spectral density acquires lines.

It 1is apparent that g(8) can be made fairly flat in its "mainlobe”, by
proper choice of Y, and this is shown in Fig. V-3, where g(6)/g(0) is plotted
in dB, for a narrower range of y-values. It should be noted that the first
sldelobe increases steadily with increasing {y. In Appendix A, two quantitative

measures of “spreading efficlency" are introduced, and it 1s shown that these
quantities are optimized, in the case of FSK, for y-values near those which
produce good “flatness” of the spectral density, in spite of the effect on the

first sidelobe. Those performance measures deal with spectral occupancy

constraints in a very simple way, and in some applications the sidelobe level

could have more significance.

The expected behavior of g(68) with large 6 is shown in Fig. V-4, for a
wide range of y~values. The quantity plotted is log R(f), where R(f) is the
fraction of the total power which lies outside a band, of width 2f, centered

on the carrier. In other words,

. R(E) = -ff 1l o de

5 ) S g () 2n

k

é

b -9 -

: .\ de’
E - {_e{ + é} 8(8') 5~

where 0 = 27xA. These curves are obtained by numerical integrationm.
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B The SFSK waveform (sinusoidal FSK), originally introduced(4) in the
e special version with y=n/2, is defined by the frequency modulation pattern
{iﬁ o(t) --% [1 - cos(2nt/A)] .

Not only is ¢(t) zero at t=0 and t=A (unlike FSK), but ¢(t) vanishes at these

8

points also. Thus n=3 and the spectral density will vary as f - as f+e, The

SFSK phase variation is
o(t) = v = - L sin(ant/a)}
A 2n : 2

which has the property
¢(A-t) = ¢ - ¢(t) ,

as a consequence of the symmetry of &(t) about t?e midpoint, t=A/2., From the
definition of P(t) we see that this symmetry of ¢(t) also implies symmetry of
the pulse function about t=(), These symmetry properties are shared by all the
binary FM waveforms discussed in the.preéent study.

Since P(t) is even, the Fourier transform, k(w), is computed from the

expression
':3 2c8cy .
o k(w) = bt f sin[y - ¢(t)] cos wt dt
Ny et

. s
TRy
e
LY AN ¢

b
¥

A .
. c:cy £ {sin[y - t% - w)t +-¥; sin(2nt/A)]

+ sin[y - f% + w)t +-%; sin(2nt/A)]} dt.

Following Amoroso(a), the integrand can be expanded in a series of Bessel
functions, after which term-by-term integration yields a rapidly convergent

38
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series. However, k(w) can be computed equal simply by numerical integration,
since the range of integration is finite and the integrand is oscillatory, so
that high accuracy can be obtained with a modest number of points. Numerical
integration has the advantage of applying equally well to all binary FM
waveforms, and the procedure is systematized and described in Section VI.
Spectra obtained in this way are shown in Figs. V-5, V-6 and V-7, which
are analogous to corresponding plots for FSK. The effectiveness of ¢ in
controlling flatness is again seen here, as well as the anticipated behavior
at large values of f. A perhaps unexpected result is the relatively large
first sidelobe, which is in all cases greater than that for FSK with the same
y~values. This appears to be a penalty associated with increasing values of

the index parameter n, as we shall see in more detail in Section VI.

Two examples of waveforms with index parameter n=2 (G(f) ~ £-6) are
E; discussed next. We call them waveforms A; and By, and they have been
briefly discussed in the literature(s).

Waveform A; 18 defined by the frequency modulation pattern

k." L] ﬂw

- 4 B
m p(t) A sin(nt/4A) ,
:; with the corresponding phase variation

$(t) --g [1 < cos(wt/A)] . |

Clearly, n=2, since $(t)~1s itgelf the highest derivative of phase which
vanishes at both ends of the chip interval. This waveform is similar to SFSK
in the sense that its frequency modulation pattern is expressed in terms of
trigonometric functions, but it is one degree less smooth at the chip
boundaries. Spectral plots on lingcar and dB scales are given in Figs. V-8 and
V-9, respectively, and Fig. V-10 shows the cumulative spectra in the form of
plots of log R(f). The general behavior is similar to FSK and SFSK, and the
magnitude of the first sidelobe 13 intermediate between these two.

Our second example having n=2, waveform B_, 18 defined by the frequency

2
modulation pattern
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(4p/A)(t/D) ; 0<t <A/
¢(t) =
(49/8) (1--%) ; A2<ct<caA

This function has a triangular shape, instead of the half sinusoid of waveform
Az, and features a discontinuous derivative at t=A/2. This discontinuity 1is
of the same order as those at t=0 and t=A, and therefore does not alter the

expected character of the asymptotic spectra. The phase variation is

29(t/a)2 ;i 0<t < A2
¢(t) =
y[1-2(1-t/8)2] ; A/2<t <A ,

and the spectra are presented in the same three forms as before in Figs, V-11,
V-12 and V-13. These latter are closely comparable to the plots for waveform
AZ' .

The normalized frequency modulation patterns,-% ¢ , of the four spreading
modulations discussed in this section are plotted together in Fig. V-14, and
the corresponding pulse functions are illustrated in Fig. V-15 for the special

case Y=n/2. In this latter case, we have

cos[o(ltl])] ; lt] < A
P(t) = i

(0] 5 otherwise,
which is direct generalization of the well-known expression for MSK.
The four waveforms are further compared in the Table V-1.
TABLE V-1

SIDELOBE LEVELS

Waveform n SL (n/2) SL(¥) L
FSK 1 -23.04dB -18.2 dB 5n/8
Ay 2 -20.6 dB -17.6 dB 19n/32
By 2  -20.0 dB -17.2 dB 19n/32
SFSK 3 -18.7 dB -16.3 dB 37w/ 64
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The column SL(w/2) gives the magnitude of the first sidelobe of each waveform
for the choice y=n/2. The column SL(Yy) gives that sidelobe level for a value

P |

of Yy which might be chosen to optimize the mainlobe spectral flatness, and the

corresponding value of y (essentially an eyeball choice) is shown in the last

- .-“ Fard .l.

column, First sidelobe levels are plotted as functions of ¢ in Fig. V-16.
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VI. POLYNOMIAL FM WAVEFORMS
It is apparent from the spectra of the waveforms studied in Section V

that the parameters § and n have a major influence on spectral properties and
that waveforms such as A2 and BZ, with the same n-value, have very similar
spectra for equal values of §. In order to study the effects of these
parameters systematically, a special set of waveforms has been devised, with
one member for each value of n. The other parameter, ¢, is simply a scale
factor for the characteristic freq?ency modulation pattern, as usual.

To control the smoothness of ¢(t) in a convenient way, we make use of

S simple polynomials, and postulate the general form

: o = $r e -

The phase function itself will be proportional to t" near t-O,.with an
aﬁalogoﬁs behévinr near t=A, hence the first phase derivative which fails to
vanish at these points is the nth. Thus the subscript correctly corresponds
e to the value of the index parameter itself. The frequency modulation patterns
are symmetric about t=A/2, and hence the pulse functions will be symmetric
s functions of t. These waveforms are not the same as the polynomial
fi? modulations discussed by simon3),

.The phase variations are obtained by integration:

i v t n-1 & n~-1 .

o ¢, (t) =+ K (f) (/8" (1-%) ae
t/A

1. - n-1 -1

;{_ =V K [ x (1-x)""" dx.

p~e o

:%: Since ¢n(A) must equal §, the constants Kn are determined by the requirement

9

2 1 aa n-1

< 1=K o ® (1-x) dx

&3 o
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,- 1 2

d -in ] D) w

Zij K n/2

L -2 (c:ose)zn-1 de .
An-l o

This is a known integral, and we find

(2n-1)! 2n-1
g = f2DL o (2ely | .
" [(m-1112

It should be noted that for n=], the waveform is simply FSK.

We call these waveforms "polynomial FM" waveforms, and denote them by the
symbol PFMh. The normalized frequency modulation patterns for the first five
waveforms are compared in Fig. VI-1, In Fig. VI-2 we compare these patterns
for PFyz, A2 and Bz, while Fig. VI-3 compares PFM3 with SFSK. From the
similarity of those frequency modulation patterns sharing a common value of n, H
we infer that our waveforms will provide a representative set, covering the
entire class of binary FM spreading modulations,

The computation of spectra by numerical integration is facilitated by a

change of variable which takes advantage of the symmetry properties of the

&n(t). For any frequency modulation pattern symmetric about t=A/2, we will

have the corresponding property

¢(a=-t) = ¥ - ¢(t),

and the pulse function will be even in t. From this last fact, we can write,

as before,

A
k(w) --% [ P(t) cos wt dt ,
o
or
2 A

siny k(w) --% f sin[y-¢(t)] cos wt dt
o
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A
[ {sin[y-¢(t)+uwt] + sin[y-¢(t)-wt]}dt .
[o]

l>|»-

A 2

o5 +x) - 3

is an odd function of x, hence we introduce the new variable, u, by means of )
A

t "'2' (1“'“) ’

or

This variable ranges from -1 to +1, and we can put
A
#(t) = o(F +3) = 31+ hw))

The new function, h(u), is an odd function of u with the boundary values

h(0) = 0, h(1) = 1,

and it describes the phase variation over half a chip in a normalized form.

In terms of the new variable, u

siny k(w) = -;— I {ein[! - — h(u) + = T B ‘”—2“-

¥ ¥ - WA _ whu '
+ sin[Z - % h(u) - 5 7)) du .
We now separate into even and odd functions of u:

nin[!+—-!h( ) +mAu
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- cos (—-——";”A) sin [____wh(u) ~ mAu]

2

and

e (w-mA) e [q)h(u; + wAu]

- CO8 (ZLU"A.) sin [ih_(_u_g-__-l-_wA_u] &

The odd terms vanish upon integration, and we obtain the desired result:

1
sinyk(w) = sin(%) | cos [-""-t-l(“—)z'tm—Au
o

]du

1
+ oin (B20) [ cos (HR(WL- wlu) 4y
o

In terms of 6=wA and the dimensionless spectral density, g(6), we have

2
[sin(tze-) £,(8) + sin (L;ﬂ) £ (8)]

g(8) = 5
1 + cos™p - 2cosy cos®

where

1
£,(0) = [ cos [_ﬂl_(_u%_t_e_u] du .
o

These last integrals are easily computed numerically, and as few as 16 points

yields adequate accuracy for most purposes.
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To find h(u) for a given waveform, it is simplest to begin with its
derivative, h'(u), which satisfies
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